Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.231
Filtrar
1.
São Paulo; s.n; 20240301. 95 p.
Tesis en Portugués | LILACS, BBO | ID: biblio-1532371

RESUMEN

A periodontite é uma doença inflamatória crônica multifactorial caracterizada pela destruição progressiva do aparelho de suporte periodontal. Atualmente, as técnicas convencionais para regeneração desses tecidos periodontais perdidos tiveram sucesso limitado. A tecnologia de membranas de células usando células-tronco mesenquimais apareceu como uma estratégia promissora na medicina regenerativa periodontal. Embora estudos recentes tenham mostrado o papel das membranas de células-tronco mesenquimais (MSCSs) no aumento dos tecidos de suporte dentário e ósseo, não há uma revisão sistemática focada especificamente na avaliação da regeneração periodontal em modelos animais ortotópicos. Esta revisão tem como objetivo avaliar o potencial das MSCSs na regeneração periodontal em comparação ao controle, em modelos animais experimentais. Estudos pré-clínicos em defeitos periodontais de modelos animais foram considerados elegíveis. A busca eletrônica incluiu as bases de dados MEDLINE, Web of Science, EMBASE e LILACS. Além disso, uma busca manual avaliou as revistas científicas na área de periodontia/regeneração. A revisão sistemática foi conduzida de acordo com as diretrizes de Preferred Reporting Item for Systematic Reviews and Meta-Analyses statement guidelines. A ferramenta do Centro de Revisão Sistemática para Experimentação com Animais de Laboratório (SYRCLE) foi usada para avaliar o risco de viés. Dos 3989 estudos obtidos a partir da busca no banco de dados eletrônicos foram incluídos 17 artigos. Foram empregados MSCSs autólogos, alógenos e xenógenos para melhorar a regeneração periodontal. Estes incluíram MSCSs do folículo dentário (DF), MSCSs do ligamento periodontal (PDL), MSCSs da polpa dentária (DP), MSCSs da medula óssea (BM), MSCSs periosteais alveolares (AP) e MSCSs gengivais (G). Em relação ao protocolo de indução de células, a maioria dos estudos utilizou ácido ascórbico (52,94%), outros utilizaram placas de cultura com polímero termo responsivo (47,06%). Os efeitos adversos, em relação à utilização das MSCSs no sítio doador, não foram identificados na maioria dos estudos, mesmo com o uso adjunto de scaffolds, membranas ou ambos. Meta-análise não foi considerada devido a heterogeneidades metodológicas. PDL-MSCSs demonstrou ser superior para aumento da regeneração periodontal em comparação ao controle, mas em um microambiente inflamatório induzido, DF-MSCSs foram melhores. Os DF-MSCSs parecem estar relacionados à espessura do cemento e dimensão periodontal. Além disso, DP-MSCSs e BM-MSCSs mostraram resultados melhores em comparação com o controle. Em contraste, AP-MSCSs não foram associados a melhorias na regeneração periodontal. A avaliação do risco de viés com a ferramenta da SYRCLE revelou que 44,12% dos estudos apresentavam baixo risco de viés, 55,29% foram incertos e 0,59%, alto risco. A presente revisão sistemática mostrou que as MSCSs podem aumentar a regeneração periodontal em modelos animais de defeito periodontal, fornecendo uma estratégia promissora para aumentar a regeneração periodontal.


Asunto(s)
Periodontitis , Ingeniería de Tejidos , Medicina Regenerativa , Células Madre Mesenquimatosas , Revisión Sistemática , Animales
2.
Int. j. morphol ; 42(1): 216-224, feb. 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1528818

RESUMEN

SUMMARY: Senile osteoporosis is mainly caused by reduced osteoblast differentiation and has become the leading cause of fractures in the elderly worldwide. Natural organics are emerging as a potential option for the prevention and treatment of osteoporosis. This study was designed to study the effect of resveratrol on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in osteoporosis mice. A mouse model of osteoporosis was established by subcutaneous injection of dexamethasone and treated with resveratrol administered by gavage. In vivo and in vitro, we used western blot to detect protein expression, and evaluated osteogenic differentiation of BMSCs by detecting the expression of osteogenic differentiation related proteins, calcium deposition, ALP activity and osteocalcin content. Resveratrol treatment significantly increased the body weight of mice, the level of serum Ca2+, 25(OH)D and osteocalcin, ration of bone weight, bone volume/total volume, trabecular thickness, trabecular number, trabecular spacing and cortical thickness in osteoporosis mice. In BMSCs of osteoporosis mice, resveratrol treatment significantly increased the expression of Runx2, osterix (OSX) and osteocalcin (OCN) protein, the level of calcium deposition, ALP activity and osteocalcin content. In addition, resveratrol treatment also significantly increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT in BMSCs of osteoporosis mice. In vitro, resveratrol increased the expression of SIRT1, p-PI3K / PI3K and p-AKT / AKT, Runx2, OSX and OCN protein, the level of calcium deposition, ALP activity and osteocalcin content in BMSCs in a concentration-dependent manner, while SIRT1 knockdown significantly reversed the effect of resveratrol. Resveratrol can attenuate osteoporosis by promoting osteogenic differentiation of bone marrow mesenchymal stem cells, and the mechanism may be related to the regulation of SIRT1/PI3K/AKT pathway.


La osteoporosis senil es causada principalmente por una diferenciación reducida de osteoblastos y se ha convertido en la principal causa de fracturas en las personas mayores en todo el mundo. Los productos orgánicos naturales están surgiendo como una opción potencial para la prevención y el tratamiento de la osteoporosis. Este estudio fue diseñado para estudiar el efecto del resveratrol en la diferenciación osteogénica de las células madre mesenquimales de la médula ósea (BMSC) en ratones con osteoporosis. Se estableció un modelo de osteoporosis en ratones mediante inyección subcutánea de dexametasona y se trató con resveratrol administrado por sonda. In vivo e in vitro, utilizamos Western blot para detectar la expresión de proteínas y evaluamos la diferenciación osteogénica de BMSC detectando la expresión de proteínas relacionadas con la diferenciación osteogénica, la deposición de calcio, la actividad de ALP y el contenido de osteocalcina. El tratamiento con resveratrol aumentó significativamente el peso corporal de los ratones, el nivel sérico de Ca2+, 25(OH)D y osteocalcina, la proporción de peso óseo, el volumen óseo/ volumen total, el espesor trabecular, el número trabecular, el espaciado trabecular y el espesor cortical en ratones con osteoporosis. En BMSC de ratones con osteoporosis, el tratamiento con resveratrol aumentó significativamente la expresión de las proteínas Runx2, osterix (OSX) y osteocalcina (OCN), el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina. Además, el tratamiento con resveratrol también aumentó significativamente la expresión de SIRT1, p-PI3K/PI3K y p-AKT/AKT en BMSC de ratones con osteoporosis. In vitro, el resveratrol aumentó la expresión de las proteínas SIRT1, p-PI3K/PI3K y p- AKT/AKT, Runx2, OSX y OCN, el nivel de deposición de calcio, la actividad de ALP y el contenido de osteocalcina en BMSC de manera dependiente de la concentración, mientras que La caída de SIRT1 revirtió significativamente el efecto del resveratrol. El resveratrol puede atenuar la osteoporosis al promover la diferenciación osteogénica de las células madre mesenquimales de la médula ósea, y el mecanismo puede estar relacionado con la regulación de la vía SIRT1/PI3K/AKT.


Asunto(s)
Animales , Masculino , Ratones , Osteoporosis/tratamiento farmacológico , Resveratrol/administración & dosificación , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Western Blotting , Modelos Animales de Enfermedad , Sirtuina 1 , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Resveratrol/farmacología , Ratones Endogámicos C57BL
3.
Pesqui. bras. odontopediatria clín. integr ; 24: e220128, 2024. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-1535006

RESUMEN

ABSTRACT Objective: To assess the effects of cobalt chloride (CoCl2) as a hypoxia mimicking agent on human umbilical cord mesenchymal stem cells (hUCMSCs) expression of HIF-1α and mTOR for use in regenerative dentistry. Material and Methods: Human umbilical cord mesenchymal stem cells were isolated and then cultured. The characteristics of stemness were screened and confirmed by flow cytometry. The experiment was conducted on hypoxia (H) and normoxia (N) groups. Each group was divided and incubated into 24-, 48-, and 72-hours observations. Hypoxic treatment was performed using 100 µM CoCl2 on 5th passage cells in a conventional incubator (37°C; 5CO2). Then, immunofluorescence of HIF-1α and mTOR was done. Data was analyzed statistically using One-way ANOVA and Tukey's HSD. Results: Significant differences were found between normoxic and hypoxic groups on HIF-1α (p=0.015) and mTOR (p=0.000) expressions. The highest HIF-1α expression was found at 48 hours in the hypoxia group, while for mTOR at 24 hours in the hypoxia group. Conclusion: Hypoxia using cobalt chloride was able to increase human umbilical cord mesenchymal stem cells expression of HIF-1α and mTOR.


Asunto(s)
Humanos , Cordón Umbilical/citología , Cloruros/química , Cobalto/química , Células Madre Mesenquimatosas/citología , Hipoxia/patología , Análisis de Varianza , Citometría de Flujo
4.
São Paulo; s.n; 20231211. 81 p.
Tesis en Portugués | LILACS, BBO | ID: biblio-1519331

RESUMEN

A regeneração óssea é um processo importante para oferecer tratamentos reconstrutivos mais rápidos e eficientes, no entanto, limitações técnicas continuam sendo um desafio, assim como a velocidade de formação e maturação óssea. Portanto, as pesquisas têm se voltado para técnicas alternativas na regeneração óssea e atualmente, a engenharia tecidual tem estudado o uso de células tronco para tratamento de perdas ósseas. A eficácia e a taxa de sucesso das diferentes técnicas e scaffolds foram avaliadas. Porém, há pouca informação sobre a eficácia combinada de carreadores xenógenos, células tronco de dentes decíduos esfoliados humano (SHEDs) e a terapia de fotobiomodulação (PBMT) na regeneração de defeitos ósseos. Baseado em estudos prévios, a proposta deste estudo foi avaliar, in vitro, a ação da PBMT, uma técnica com propriedades imunomodulatórias, angiogênicas e com capacidade de aumentar a adesão, proliferação e migração celular ao biomaterial tridimensional de osso bovino mineralizado desproteinizado com colágeno suíno a 10% (OBMDC), semeado com SHEDs, para acelerar e aumentar a taxa de formação óssea. Foi utilizado o laser de diodo, com comprimento de onda de 660nm; 40mW de potência; 3J/cm2 de densidade de energia e 2 segundos de tempo de aplicação após 24h e 72h do plaqueamento. Para avaliar a proliferação, as SHEDs foram descongeladas cultivadas, plaqueadas, semeadas no scaffold de OBMDC e divididas em 8 grupos: 1) Controle 15%; 2) Controle 5%; 3) OBMDC 15%; 4) OBMDC 5%; 5) Laser 15%; 6) Laser 5%; 7) OBMDC-L 15%; 8) OBMDC-L 5% e a análise de proliferação foi realizada por MTT. Para avaliar diferenciação celular, as amostras foram divididas em quatro grupos: 1) Grupo Controle clonogênico: SHEDs cultivadas em meio clonogênico; 2) Grupo Controle mineralizante: SHEDs cultivadas em meio mineralizante; 3) Grupo laser clonogênico: SHEDs cultivadas em meio clonogênico com aplicação de laser; 4) Grupo laser mineralizante: SHEDs cultivada em meio mineralizante com aplicação de laser. Para o grupo laser, as células foram irradiadas no período de 24h e 72h após o plaqueamento e todas as amostras fixadas para análise da formação dos depósitos de cálcio, através do ensaio de vermelho de alizarina após 23 dias de cultivo celular e os dados foram tratados estatisticamente (p0,05). Para avaliar a morfologia celular das SHEDs em todos os grupos, utilizou-se o microscópio invertido de fase em 24h e 72h após o plaqueamento. O grupo OBMDC-L 5% SFB em 72h, demonstrou maior proliferação celular que o grupo Controle (p=0.0286). O grupo laser no meio mineralizante apresentou maior formação de depósito de matriz mineralizada em comparação ao grupo controle em meio clonogênico, controle em meio mineralizante e laser em meio clonogênico (p<0,0001). Considerando as condições experimentais deste estudo, concluiu-se que, in vitro, as SHEDs, semeadas em scaffold OBMDC, proliferaram mais após 2 aplicações de PBMT e houve diferenciação osteogênica das células após 23 dias em meio mineralizante.


Asunto(s)
Regeneración Ósea , Trasplante Óseo , Terapia por Luz de Baja Intensidad , Células Madre Mesenquimatosas
5.
J. coloproctol. (Rio J., Impr.) ; 43(4): 316-320, Oct.-Dec. 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1528934

RESUMEN

Introduction: Perianal fistula is a common colorectal disease which is caused mainly by cryptoglandular disease. Although most cases are treated successfully by surgery, management of complex perianal fistulas (CPAF) remains a challenge with limited results in recurrence and sometimes associated with fecal incontinence. The CPAF treatment with autologous adipose-derived mesenchymal stem cells (ASCs) had become a research hotspot. The technique started to be used in the treatment of Crohn's disease (CD) fistulas, where the studies showed safe and goods result from the procedure. Cultured ASCs have been used but this approach requires the preceding collection of adipose tissue, time for isolation of ASCs and subsequent in vitro expansion, need for laboratory facilities, and expertise in cell culturing. These factors have been getting over by using the commercially available alternative, allogenic ASCs. Treatment with allogeneic ASCs has shown good results in patients with CD fistulas, however with the disadvantage of being expensive. Objective: To show that the injection with freshly collected adipose tissue is an alternative to treatment with autologous or allogenic ASCs with several advantages. Methods: In this case report, we show our first experience in the treatment of CPAF with the application of collected adipose tissue in a tertiary referral hospital from Belo Horizonte, Brazil. Results The patient had a good postoperative recuperation with a complete fistula healing after 8 months without adverse effects. Conclusion: Injection with freshly collected adipose tissue is a promising and apparently safe sphincter-sparing technique in the treatment of CPAF. (AU)


Asunto(s)
Humanos , Femenino , Adulto , Fístula Rectal/cirugía , Células Madre Mesenquimatosas , Enfermedad de Crohn
6.
J. oral res. (Impresa) ; 12(1): 86-99, abr. 4, 2023. ilus
Artículo en Inglés | LILACS | ID: biblio-1512278

RESUMEN

Objective: The objective of this study was to investigate the morphology, proliferation, and differentiation of gingival mesenchymal stem cells (GMSCs) irradiated with a 970 nm Diode Laser (LLLT). It is essential to validate the efficacy of treatment, optimize irradiation conditions and guarantee the safety and quality of stem cells for future use in dental applications. Materials and Methods: GMSCs were cultured in standard conditions and irradiated with a Diode laser (970 nm, 0.5W) with an energy density of 9J/cm2. Cell proliferation was assessed with the WST-1 proliferation kit. GMSCs were differentiated into chondrogenic and osteogenic lineages. Cell morphology was performed with Hematoxylin/eosin staining, and quantitative nuclear analysis was done. Cell viability was monitored with trypan blue testing. Results: GMSCs subjected to irradiation demonstrated a significant increase in proliferation at 72 hours compared to the non-irradiated controls (p=0.027). This indicates that the 970 nm diode laser has a stimulatory effect on the proliferation of GMSCs. LLLT-stimulated GMSCs exhibited the ability to differentiate into chondrogenic and osteogenic lineages. A substantial decrease in cell viability was observed 24 hours after irradiation (p=0.024). However, after 48 hours, the cell viability recovered without any significant differences. This indicates that there might be a temporary negative impact on cell viability immediately following irradiation, but the cells were able to recover and regain their viability over time. Conclusions: This study support that irradiation with a 970 nm diode laser could stimulate the proliferation of GMSCs, maintain their ability to differentiate into chondrogenic and osteogenic lineages, and has minimal impact on the mor- phological characteristics of the cells. These results support the potential use of NIR Lasers in combination with GMSCs as a promising strategy for dental treatments.


Objetivo: El objetivo de este estudio fue investigar la morfología, proliferación y diferenciación de las células madre mesenquimatosas (GMSC) irradiadas con un láser de diodo de 970 nm (LLLT). Es fundamental validar la eficacia del tratamiento, optimizar las condiciones de irradiación y garantizar la seguridad y calidad de las células madre para su uso futuro en aplicaciones dentales.Materiales y Métodos: Las GMSC se cultivaron en condiciones estándar y se irradiaron con un láser de diodo (970 nm, 0,5 W) con una densidad de energía de 9 J/cm2. La proliferación celular se evaluó con el kit de proliferación WST-1. Las GMSC se diferenciaron en linajes condrogénicos y osteogénicos. La morfología celular se realizó con tinción de hematoxilina/eosina y se realizó un análisis nuclear cuantitativo. La viabilidad celular se controló con prueba de azul de tripano. Resultados: Las GMSC sometidas a irradiación demostraron un aumento significativo en la proliferación a las 72 horas en comparación con los controles no irradiados (p=0,027). Esto indica que el láser de diodo de 970 nm tiene un efecto estimulante sobre la proliferación de GMSC. Las GMSC estimuladas con LLLT exhibieron la capacidad de diferenciarse en linajes condrogénicos y osteogénicos. Se observó una disminución sustancial de la viabilidad celular 24 horas después de la irradiación (p=0,024). Sin embargo, después de 48 horas, la viabilidad celular se recuperó sin diferencias significativas. Esto indica que podría haber un impacto negativo temporal en la viabilidad de las células inmediatamente después de la irradiación, pero las células pudieron recuperarse y recuperar su viabilidad con el tiempo. Conclusión: En conclusión, este estudio respalda que la irradiación con un láser de diodo de 970 nm podría estimular la proliferación de GMSC, mantener su capacidad para diferenciarse en linajes condrogénicos y osteogénicos y tiene un impacto mínimo en las características morfológicas de las células. Estos resultados respaldan el uso potencial de láseres NIR en combinación con GMSC como una estrategia prometedora para tratamientos dentales.


Asunto(s)
Humanos , Terapia por Luz de Baja Intensidad , Proliferación Celular/efectos de la radiación , Láseres de Semiconductores , Células Madre Mesenquimatosas/efectos de la radiación , Técnicas In Vitro , Encía/efectos de la radiación
7.
International Journal of Oral Science ; (4): 6-6, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971593

RESUMEN

The failure rate of dental implantation in patients with well-controlled type 2 diabetes mellitus (T2DM) is higher than that in non-diabetic patients. This due, in part, to the impaired function of bone marrow mesenchymal stem cells (BMSCs) from the jawbone marrow of T2DM patients (DM-BMSCs), limiting implant osseointegration. RNA N6-methyladenine (m6A) is important for BMSC function and diabetes regulation. However, it remains unclear how to best regulate m6A modifications in DM-BMSCs to enhance function. Based on the "m6A site methylation stoichiometry" of m6A single nucleotide arrays, we identified 834 differential m6A-methylated genes in DM-BMSCs compared with normal-BMSCs (N-BMSCs), including 43 and 790 m6A hypermethylated and hypomethylated genes, respectively, and 1 gene containing hyper- and hypomethylated m6A sites. Differential m6A hypermethylated sites were primarily distributed in the coding sequence, while hypomethylated sites were mainly in the 3'-untranslated region. The largest and smallest proportions of m6A-methylated genes were on chromosome 1 and 21, respectively. MazF-PCR and real-time RT-PCR results for the validation of erythrocyte membrane protein band 4.1 like 3, activity-dependent neuroprotector homeobox (ADNP), growth differentiation factor 11 (GDF11), and regulator of G protein signalling 2 agree with m6A single nucleotide array results; ADNP and GDF11 mRNA expression decreased in DM-BMSCs. Furthermore, gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses suggested that most of these genes were enriched in metabolic processes. This study reveals the differential m6A sites of DM-BMSCs compared with N-BMSCs and identifies candidate target genes to enhance BMSC function and improve implantation success in T2DM patients.


Asunto(s)
Humanos , Médula Ósea/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Implantes Dentales/efectos adversos , Diabetes Mellitus Tipo 2/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Células Madre Mesenquimatosas/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN
8.
Journal of Zhejiang University. Science. B ; (12): 115-129, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971474

RESUMEN

Ex vivo culture-amplified mesenchymal stem cells (MSCs) have been studied because of their capacity for healing tissue injury. MSC transplantation is a valid approach for promoting the repair of damaged tissues and replacement of lost cells or to safeguard surviving cells, but currently the efficiency of MSC transplantation is constrained by the extensive loss of MSCs during the short post-transplantation period. Hence, strategies to increase the efficacy of MSC treatment are urgently needed. Iron overload, reactive oxygen species deposition, and decreased antioxidant capacity suppress the proliferation and regeneration of MSCs, thereby hastening cell death. Notably, oxidative stress (OS) and deficient antioxidant defense induced by iron overload can result in ferroptosis. Ferroptosis may inhibit cell survival after MSC transplantation, thereby reducing clinical efficacy. In this review, we explore the role of ferroptosis in MSC performance. Given that little research has focused on ferroptosis in transplanted MSCs, further study is urgently needed to enhance the in vivo implantation, function, and duration of MSCs.


Asunto(s)
Humanos , Antioxidantes/metabolismo , Ferroptosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Sobrecarga de Hierro/metabolismo
9.
Chinese Journal of Hepatology ; (12): 556-560, 2023.
Artículo en Chino | WPRIM | ID: wpr-986169

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) transport and transmit intercellular information and play an essential role in physiological and pathological processes. MSC-EVs, MSC-EVs-microRNA, and genetically modified MSC-EVs are involved in the onset and progression of different liver diseases and play a role in reducing liver cell damage, promoting liver cell regeneration, inhibiting liver fibrosis, regulating liver immunity, alleviating liver oxidative stress, inhibiting liver cancer occurrence, and others. Hence, it will replace MSCs as a research hotspot for cell-free therapy. This article reviews the research progress of MSC-EVs in liver diseases and provides a new basis for cell-free therapy of clinical liver diseases.


Asunto(s)
Humanos , Vesículas Extracelulares , MicroARNs/genética , Neoplasias Hepáticas , Células Madre Mesenquimatosas
10.
Journal of Biomedical Engineering ; (6): 95-102, 2023.
Artículo en Chino | WPRIM | ID: wpr-970678

RESUMEN

The study aims to explore the effect of mesenchymal stem cells-derived exosomes (MSCs-Exo) on staurosporine (STS)-induced chondrocyte apoptosis before and after exposure to pulsed electromagnetic field (PEMF) at different frequencies. The AMSCs were extracted from the epididymal fat of healthy rats before and after exposure to the PEMF at 1 mT amplitude and a frequency of 15, 45, and 75 Hz, respectively, in an incubator. MSCs-Exo was extracted and identified. Exosomes were labeled with DiO fluorescent dye, and then co-cultured with STS-induced chondrocytes for 24 h. Cellular uptake of MSC-Exo, apoptosis, and the protein and mRNA expression of aggrecan, caspase-3 and collagenⅡA in chondrocytes were observed. The study demonstrated that the exposure of 75 Hz PEMF was superior to 15 and 45 Hz PEMF in enhancing the effect of exosomes in alleviating chondrocyte apoptosis and promoting cell matrix synthesis. This study lays a foundation for the regulatory mechanism of PEMF stimulation on MSCs-Exo in inhibiting chondrocyte apoptosis, and opens up a new direction for the prevention and treatment of osteoarthritis.


Asunto(s)
Animales , Ratas , Apoptosis , Condrocitos , Campos Electromagnéticos , Exosomas/fisiología , Células Madre Mesenquimatosas/metabolismo
11.
Acta Academiae Medicinae Sinicae ; (6): 1-8, 2023.
Artículo en Chino | WPRIM | ID: wpr-970438

RESUMEN

Objective To explore the effect of microRNA-22-3p (miR-22-3p) regulating the expression of Kruppel-like factor 6 (KLF6) on the cardiomyocyte-like differentiation of bone marrow mesenchymal stem cell (BMSC). Methods Rat BMSC was isolated and cultured,and the third-generation BMSC was divided into a control group,a 5-azacytidine(5-AZA)group,a mimics-NC group,a miR-22-3p mimics group,a miR-22-3p mimics+pcDNA group,and a miR-22-3p mimics+pcDNA-KLF6 group.Real-time fluorescent quantitative PCR (qRT-PCR) was carried out to determine the expression of miR-22-3p and KLF6 in cells.Immunofluorescence staining was employed to detect the expression of Desmin,cardiac troponin T (cTnT),and connexin 43 (Cx43).Western blotting was employed to determine the protein levels of cTnT,Cx43,Desmin,and KLF6,and flow cytometry to detect the apoptosis of BMSC.The targeting relationship between miR-22-3p and KLF6 was analyzed by dual luciferase reporter gene assay. Results Compared with the control group,5-AZA up-regulated the expression of miR-22-3p (q=7.971,P<0.001),Desmin (q=7.876,P<0.001),cTnT (q=10.272,P<0.001),and Cx43 (q=6.256,P<0.001),increased the apoptosis rate of BMSC (q=12.708,P<0.001),and down-regulated the mRNA (q=20.850,P<0.001) and protein (q=11.080,P<0.001) levels of KLF6.Compared with the 5-AZA group and the mimics-NC group,miR-22-3p mimics up-regulated the expression of miR-22-3p (q=3.591,P<0.001;q=11.650,P<0.001),Desmin (q=5.975,P<0.001;q=13.579,P<0.001),cTnT (q=7.133,P<0.001;q=17.548,P<0.001),and Cx43 (q=4.571,P=0.037;q=11.068,P<0.001),and down-regulated the mRNA (q=7.384,P<0.001;q=28.234,P<0.001) and protein (q=4.594,P=0.036;q=15.945,P<0.001) levels of KLF6.The apoptosis rate of miR-22-3p mimics group was lower than that of 5-AZA group (q=8.216,P<0.001).Compared with the miR-22-3p mimics+pcDNA group,miR-22-3p mimics+pcDNA-KLF6 up-regulated the mRNA(q=23.891,P<0.001) and protein(q=13.378,P<0.001)levels of KLF6,down-regulated the expression of Desmin (q=9.505,P<0.001),cTnT (q=10.985,P<0.001),and Cx43 (q=8.301,P<0.001),and increased the apoptosis rate (q=4.713,P=0.029).The dual luciferase reporter gene experiment demonstrated that KLF6 was a potential target gene of miR-22-3p. Conclusion MiR-22-3p promotes cardiomyocyte-like differentiation of BMSC by inhibiting the expression of KLF6.


Asunto(s)
Animales , Ratas , Miocitos Cardíacos , Factor 6 Similar a Kruppel , Conexina 43 , Desmina , Diferenciación Celular , Azacitidina/farmacología , Células Madre Mesenquimatosas , ARN Mensajero , MicroARNs
12.
Chinese Medical Journal ; (24): 194-206, 2023.
Artículo en Inglés | WPRIM | ID: wpr-970054

RESUMEN

BACKGROUND@#Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown.@*METHODS@#Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance.@*RESULTS@#Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments.@*CONCLUSIONS@#Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.


Asunto(s)
Animales , Humanos , Ratones , Apoptosis , Células de la Médula Ósea , Comunicación Celular , Conexina 43/genética , Uniones Comunicantes/metabolismo , Mesilato de Imatinib/uso terapéutico , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral , Calcio/metabolismo
13.
Chinese Journal of Oncology ; (12): 50-55, 2023.
Artículo en Chino | WPRIM | ID: wpr-969805

RESUMEN

Objective: To observe the effects of exosomes derived from human umbilical cord mesenchymal stem cells on the proliferation and invasion of pancreatic cancer cells, and to analyze the contents of exosomes and explore the mechanisms affecting pancreatic cancer cells. Methods: Exosomes extracted from human umbilical cord mesenchymal stem cells were added to pancreatic cancer cells BxPC3, Panc-1 and mouse models of pancreatic cancer, respectively. The proliferative activity and invasion abilities of BxPC3 and Panc-1 cells were measured by cell counting kit-8 (CCK-8) and Transwell assays. The expressions of miRNAs in exosomes were detected by high-throughput sequencing. GO and KEGG were used to analyze the related functions and the main metabolic pathways of target genes with high expressions of miRNAs. Results: The results of CCK-8 cell proliferation assay showed that the absorbance of BxPC3 and Panc-1 cells in the hucMSCs-exo group was significantly higher than that in the control group [(4.68±0.09) vs. (3.68±0.01), P<0.05; (5.20±0.20) vs. (3.45±0.17), P<0.05]. Transwell test results showed that the number of invasion cells of BxPC3 and Panc-1 in hucMSCs-exo group was significantly higher than that in the control group (129.40±6.02) vs. (89.40±4.39), P<0.05; (134.40±7.02) vs. (97.00±6.08), P<0.05. In vivo experimental results showed that the tumor volume and weight in the exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs-exo) group were significantly greater than that in the control group [(884.57±59.70) mm(3) vs. (695.09±57.81) mm(3), P<0.05; (0.94±0.21) g vs. (0.60±0.13) g, P<0.05]. High-throughput sequencing results showed that miR-148a-3p, miR-100-5p, miR-143-3p, miR-21-5p and miR-92a-3p were highly expressed. GO and KEGG analysis showed that the target genes of these miRNAs were mainly involved in the regulation of glucosaldehylation, and the main metabolic pathways were ascorbic acid and aldehyde acid metabolism, which were closely related to the development of pancreatic cancer. Conclusion: Exosomes derived from human umbilical cord mesenchymal stem cells can promote the growth of pancreatic cancer cells and the mechanism is related to miRNAs that are highly expressed in exosomes.


Asunto(s)
Ratones , Animales , Humanos , MicroARNs/metabolismo , Exosomas/genética , Sincalida/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical
14.
Protein & Cell ; (12): 202-216, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982531

RESUMEN

Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.


Asunto(s)
Humanos , Células Madre Mesenquimatosas/fisiología , Senescencia Celular , Homeostasis , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mitocondrias/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Células Cultivadas
15.
International Journal of Oral Science ; (4): 18-18, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982474

RESUMEN

Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Calidad de Vida , Regeneración , Glándulas Salivales , Células Madre
16.
Chinese journal of integrative medicine ; (12): 517-525, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982310

RESUMEN

OBJECTIVE@#To investigate the therapeutic effects of total glucosides of paeony (TGP) on psoriasis based on the immunomodulatory effect of dermal mesenchymal stem cells (DMSCs).@*METHODS@#A total of 30 male BALB/c mice were divided into 6 groups (n=5 in each) by a random number table method, including control, psoriasis model (model, 5% imiquimod cream 42 mg/d), low-, medium- and high-dose TGP (50, 100, and 200 mg/kg, L, M-, and H-TGP, respectively), and positive control group (2.5 mg/kg acitretin). After 14 days of continuous administration, the skin's histopathological changes, apoptosis, secretion of inflammatory cytokines, and proportion of regulatory T cells (Treg) and T helper cell 17 (Th17) were evaluated using hematoxylin-eosin (HE) staining, TdT-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, and flow cytometry, respectively. DMSCs were further isolated from the skin tissues of normal and psoriatic mice, and the cell morphology, phenotype, and cycle were observed. Furthermore, TGP was used to treat psoriatic DMSCs to analyze the effects on the DMSCs immune regulation.@*RESULTS@#TGP alleviated skin pathological injury, reduced epidermis layer thickness, inhibited apoptosis, and regulated the secretion of inflammatory cytokines and the proportion of Treg and Th17 in the skin tissues of psoriatic mice (P<0.05 or P<0.01). There was no significant difference in cell morphology and phenotype between control and psoriatic DMSCs (P>0.05), however, more psoriatic DMSCs remained in G0/G1 phase compared with the normal DMSCs (P<0.01). TGP treatment of psoriatic DMSCs significantly increased cell viability, decreased apoptosis, relieved inflammatory response, and inhibited the expression of toll-like receptor 4 and P65 (P<0.05 or P<0.01).@*CONCLUSION@#TGP may exert a good therapeutic effect on psoriasis by regulating the immune imbalance of DMSCs.


Asunto(s)
Masculino , Animales , Ratones , Psoriasis/tratamiento farmacológico , Citocinas , Glucósidos/uso terapéutico , Células Madre Mesenquimatosas , Ratones Endogámicos BALB C , Paeonia
17.
Chinese Journal of Cellular and Molecular Immunology ; (12): 626-632, 2023.
Artículo en Chino | WPRIM | ID: wpr-981909

RESUMEN

Objective To investigate the effect of H2O2-induced oxidative stress on autophagy and apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Methods hBMSCs were isolated and cultured. The cells were divided into control group, 3-MA group, H2O2 group, H2O2 combined with 3-MA group. DCFH-DA staining was used to analyze the level of reactive oxygen species (ROS). hBMSCs were treated with 0, 50, 100, 200, 400 μmol/L H2O2, and then the cell viability was detected by CCK-8 assay. The level of autophagy was detected by monodansylcadaverine (MDC) staining and LysoTracker Red staining. The cell apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of beclin 1, mTOR, phosphorylated mTOR (p-mTOR), cleaved caspase-3(c-caspase-3) and caspase-3 proteins. Results Compared with the control group and 3-MA group, ROS level and autophagosomes were increased and the proliferation and apoptosis were decreased in H2O2 group. The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, while the p-mTOR was down-regulated. Compared with the 3-MA group, the H2O2 combined with 3-MA group also had an increased ROS level and autophagosomes, but not with significantly increased apoptosis rate; The protein expression of beclin 1, mTOR, c-caspase-3 was up-regulated, and the p-mTOR was down-regulated. Conclusion H2O2 can induce hMSCs to trigger oxidative stress response. It enhances the autophagy and inhibits the proliferation and apoptosis of hBMSCs.


Asunto(s)
Humanos , Beclina-1/metabolismo , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Estrés Oxidativo , Autofagia , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular
18.
Chinese Journal of Cellular and Molecular Immunology ; (12): 481-487, 2023.
Artículo en Chino | WPRIM | ID: wpr-981889

RESUMEN

Objective To investigate the effects of miR-877-3p on migration and apoptotic T lymphocytes of bone mesenchymal stem cells (BMSCs). Methods The model of osteoporosis induced by bilateral ovariectomy (OVX) and sham operation was established. At 8 weeks after operation, the bone parameters of the two groups were detected by micro-CT. The levels of monocyte chemotactic protein 1(MCP-1) in BMSCs were detected by ELISA. BMSC in OVX group and sham group were co-cultured with T lymphocytes, respectively. The migration ability of T lymphocytes in the two groups was observed by TranswellTM assay with PKH26 staining and apoptosis of T lymphocytes were detected by flow cytometry. Reverse transcription PCR was used to detect the expression of miR-877-3p in BMSCs. miR-877-3p was overexpressed or down-regulated by cell transfection. The level of MCP-1 secreted by BMSCs in each group was detected by ELISA. The migration and apoptosis of T lymphocytes were detected by the above methods. Results The number of trabecular bone and bone mineral density in OVX group were lower than those in sham group. The levels of MCP-1 secretion, chemotactic and apoptotic T lymphocyte ability of BMSCs in OVX group were also lower than those in sham group. The expression level of miR-877-3p in BMSC in OVX group was higher than that in sham group. After overexpression of BMSC miR-877-3p, the levels of MCP-1 secreted from BMSCs, and apoptotic T lymphocytes decreased, while the results were opposite after down-regulation of miR-877-3p. Conclusion miR-877-3p may be one of the causes of osteoporosis by inhibiting MCP-1 secretion of BMSCs and the migration and apoptosis of T lymphocytes.


Asunto(s)
Animales , Femenino , Ratones , Apoptosis/genética , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Quimiocina CCL2/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteogénesis , Osteoporosis/genética , Linfocitos T/metabolismo
19.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 615-621, 2023.
Artículo en Chino | WPRIM | ID: wpr-981641

RESUMEN

OBJECTIVE@#To investigate the regulatory effects of miR-26a-5p on the osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs) by regulating cAMP response element binding protein 1 (CREB1).@*METHODS@#The adipose tissues of four 3-4 weeks old female C57BL/6 mice were collected and the cells were isolated and cultured by digestion separation method. After morphological observation and identification by flow cytometry, the 3rd-generation cells were subjected to osteogenic differentiation induction. At 0, 3, 7, and 14 days after osteogenic differentiation induction, the calcium deposition was observed by alizarin red staining, ALP activity was detected, miR- 26a-5p and CREB1 mRNA expressions were examined by real-time fluorescence quantitative PCR, and CREB1 protein and its phosphorylation (phospho-CREB1, p-CREB1) level were measured by Western blot. After the binding sites between miR-26a-5p and CREB1 was predicted by the starBase database, HEK-293T cells were used to conduct a dual-luciferase reporter gene experiment to verify the targeting relationship (represented as luciferase activity after 48 hours of culture). Finally, miR-26a-p inhibitor (experimental group) and the corresponding negative control (control group) were transfected into ADSCs. Alizarin red staining, ALP activity, real-time fluorescent quantitative PCR (miR-26a-5p) and Western blot [CREB1, p-CREB1, Runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN)] were performed at 7 and 14 days after osteogenic induction culture.@*RESULTS@#The cultured cells were identified as ADSCs. With the prolongation of osteogenic induction culture, the number of calcified nodules and ALP activity significantly increased ( P<0.05). The relative expression of miR-26a-5p in the cells gradually decreased, while the relative expressions of CREB1 mRNA and protein, as well as the relative expression of p-CREB1 protein were increased. The differences were significant between 7, 14 days and 0 day ( P<0.05). There was no significant difference in p-CREB1/CREB1 between different time points ( P>0.05). The starBase database predicted that miR-26a-5p and CREB1 had targeted binding sequences, and the dual-luciferase reporter gene experiment revealed that overexpression of miR-26a-5p significantly suppressed CREB1 wild-type luciferase activity ( P<0.05). After 7 and 14 days of osteogenic induction, compared with the control group, the number of calcified nodules, ALP activity, and relative expressions of CREB1, p-CREB1, OCN, and RUNX2 proteins in the experimental group significantly increased ( P<0.05). There was no significant difference in p-CREB1/CREB1 between the two groups ( P>0.05).@*CONCLUSION@#Knocking down miR-26a-5p promoted the osteogenic differentiation of ADSCs by up-regulating CREB1 and its phosphorylation.


Asunto(s)
Animales , Femenino , Ratones , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Osteocalcina/metabolismo , Osteogénesis/genética , ARN Mensajero/genética
20.
Chinese Journal of Biotechnology ; (12): 1773-1788, 2023.
Artículo en Chino | WPRIM | ID: wpr-981169

RESUMEN

A triple-transgenic (tyrosine hydroxylase/dopamine decarboxylase/GTP cyclohydrolase 1, TH/DDC/GCH1) bone marrow mesenchymal stem cell line (BMSCs) capable of stably synthesizing dopamine (DA) transmitters were established to provide experimental evidence for the clinical treatment of Parkinson's disease (PD) by using this cell line. The DA-BMSCs cell line that could stably synthesize and secrete DA transmitters was established by using the triple transgenic recombinant lentivirus. The triple transgenes (TH/DDC/GCH1) expression in DA-BMSCs was detected using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. Moreover, the secretion of DA was tested by enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC). Chromosome G-banding analysis was used to detect the genetic stability of DA-BMSCs. Subsequently, the DA-BMSCs were stereotactically transplanted into the right medial forebrain bundle (MFB) of Parkinson's rat models to detect their survival and differentiation in the intracerebral microenvironment of PD rats. Apomorphine (APO)-induced rotation test was used to detect the improvement of motor dysfunction in PD rat models with cell transplantation. The TH, DDC and GCH1 were expressed stably and efficiently in the DA-BMSCs cell line, but not expressed in the normal rat BMSCs. The concentration of DA in the cell culture supernatant of the triple transgenic group (DA-BMSCs) and the LV-TH group was extremely significantly higher than that of the standard BMSCs control group (P < 0.000 1). After passage, DA-BMSCs stably produced DA. Karyotype G-banding analysis showed that the vast majority of DA-BMSCs maintained normal diploid karyotypes (94.5%). Moreover, after 4 weeks of transplantation into the brain of PD rats, DA-BMSCs significantly improved the movement disorder of PD rat models, survived in a large amount in the brain microenvironment, differentiated into TH-positive and GFAP-positive cells, and upregulated the DA level in the injured area of the brain. The triple-transgenic DA-BMSCs cell line that stably produced DA, survived in large numbers, and differentiated in the rat brain was successfully established, laying a foundation for the treatment of PD using engineered culture and transplantation of DA-BMSCs.


Asunto(s)
Ratas , Animales , Dopamina , Enfermedad de Parkinson/metabolismo , Células Madre Mesenquimatosas/metabolismo , Línea Celular , Encéfalo/metabolismo , Diferenciación Celular , Trasplante de Células Madre Mesenquimatosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA